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All proposals of phase-space models for quantum mechanics are classified into 
two well-defined classes and then described in terms of operational statistical 
theories. The extreme generality of the description, devoid of unessential details, 
leads to almost trivial proofs of many facts discovered elsewhere with great 
effort. A new proposal of quantization is briefly sketched. 

1. TWO APPROACHES 

The great successes and development of quantum mechanics were 
accompanied by obstinate efforts to bring it back to familiar classical 
grounds. The never-abating motivation of these efforts comes presumably 
from the natural tendency to want to "understand" quantum mechanics. 
This means "to connect it with one's whole experience and knowledge," 
which are inevitably "classical." The long search for a phase-space reformu- 
lation of  quantum mechanics, like the search for the philosopher's stone, 
resulted in a realization of  the impossibility of achieving the goal. It seems 
clear now that the basic structures of quantum theories differ essentially 
from those of classical theories, hence any classical representation of quantal 
states and observables can be constructed only at the cost of destroying 
the original quantal theory. A quantal theory must die before it enters the 
classical paradise. 

Nevertheless the search for phase-space models of quantal theories is 
not devoid of importance. The majority of physicists who are satisfied with 
the standard quantum mechanics consider a representation of quantal states 
by probability distributions over a phase space to be a convenient calcula- 
tional device. For those who want to go outside the borders imposed by 
quantum mechanics, as well as for those interested in relations between 
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different statistical theories, the classical representations should be still an 
object of interest. 

It has appeared recently that all attempts to find satisfactory classical 
models for quantal theories have a common underlying structure, which 
makes it possible to compare and to classify them. There are two well-defined 
approaches. The first one we will call the state-injection approach; it 
comes directly from Wigner's idea of representing linearly quantum- 
mechanical density matrices as probability distributions over some phase 
space (Hillery et aL, 1984; O'Connell, 1988; Sudarshan, 1983). To this 
approach belong numerous proposals of nonnegative distribution functions 
representing quantal states made by Husimi, Bopp, Kano, She and Heffner, 
Mehta and Sudarshan, Prugove6ki, and others [for references see Hillery 
et al. (1984), O'Connell (1988), Sudarshan (1983)]. The operational gen- 
eralization of statistical theories in its final form (Davies and Lewis, 1970; 
Davies, 1976; Ludwig, 1983) made possible the discovery (Ali and 
Prugove~ki, 1977) of a common scheme of all these proposals, which in 
turn led to the formulation of the elegant mathematical framework of the 
state-injection approach [Neumann, 1971; Busch and Lahti, 1989; Singer 
and Stulpe, 1991; Busch et  aL, 1991; Bugajski et  al., 1993). 

Proposals of the second class, which we will call the delinearization 
approach, consider just the quantal pure states as points of the phase space 
of the sought classical representation. The delinearization approach unifies 
at least three streams. One of them comes from critical discussions around 
yon Neumann's description of quantum-mechanical composed systems. Here 
belong important papers of Misra (1974) and Ghirardi et al. (1976). Another 
one is related to attempts to formulate a geometrical framework for quantum 
mechanics in terms of infinite-dimensional Hamiltonian systems and to the 
geometric quantization program (Hermann, 1965, 1982; Kibble, 1979; 
Souriau, 1983; Cirelli and Lanzavecchia, 1984). It was suggested recently 
that the delinearization approach should also include the broad field of 
nonlinear generalizations of quantum mechanics (Bugajski, 1991). All for- 
malisms in the delinearization approach must contain, which is a rather 
new discovery (Holevo, 1982; Neumann, 1985; Ludwig, 1990; Bugajski, 
1991; Bugajski et  al., 1993), the same basic mathematical structure, similar to 
that of the state injection approach. This opens a way to formulate the funda- 
mentals of the two approaches in a common language of statistical dualities. 

2. STATISTICAL DUALITIES 

The notion of statistical duality, coined by the Marburg school (Ludwig, 
1983; Werner, 1983; Neumann, 1985; Stulpe, 1988), provides a natural 
generalization of the basic structure of operational statistical theories 
(Davies and Lewis, 1970; Davies, 1976; Ludwig, 1983). We define statistical 
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duality as a pair (V, W) consisting of a base-normed Banach space V and 
an order-unit Banach space W together with a bilinear form ( . ,  �9 ): V x W--> 

placing V and W in norm and order duality. We can imagine W as a 
(norm-) closed subspace of the Banach dual V*, and V as a closed subspace 
of W*. The base Sv of V represents the convex set of all states of the 
physical statistical system described by the statistical duality. The set Ex Sv 
of the extreme elements of Sv represents pure states (it may be empty in 
general). The order interval [o, e]w of W, where e denotes the order unit 
and o the origin of W, represents the set of all elementary observables 
(effects, yes-no experiments, etc.) of the physical system in question. Its 
set of  extreme elements Ex[o, e] w can be identified as the set of elements 
of the "quantum logic" of the physical system (it also may be empty in 
general). The real number (a, a) for ~ c Sv and a E [o, e]w is the probability 
of response 1 after a single measurement of the effect a on the state a. 

Among the variety of statistical dualities we should be able to point 
out those describing classical systems. We will assume that any classical 
statistical theory has to display two fundamental properties: the unique 
decomposability of all mixed states and the mutual compatibility 
(coexistence) of all observables. The first property translated into the 
abstract language of statistical dualities forces upon Sv (the base of V) the 
structure of a Bauer simplex, whereas the second makes W be a Banach 
lattice. It is well known (Alfsen, 1971; Asimov and Ellis, 1980; Schaefer, 
1986) that under such conditions V can be identified as M(f t ) ,  the base- 
normed space of all signed (Radon) measures on Ut, with ft = Ex Sv and 
Sv = M ( O ) [  (the probability measures). The space M(f t )  is the (Banach) 
dual of C(I2), it is a vector lattice, and so is its dual M(f~)*. The characteris- 
tic functions of the Baire subsets of Ft can be identified with the extreme 
elements of the order interval [o, e]a4im*. The norm-closed subspace F( f t )  
of M([2)* spanned by these characteristic functions seems to fit well for 
the second element of the classical statistical duality. Thus we define classical 
duality as the pair (M(f~), F( f l ) )  of Banach spaces with M(f t )  the base- 
normed space of all signed Baire measures on a compact Hausdorff I) and 
F(~q) the order-unit space of (Baire) measurable real functions on D. The 
bilinear form is defined by means of an integral [for details see Singer and 
Stulpe (1991)]. 

It is not clear how to characterize quantal statistical dualities. We will 
simply assume that "quantal"  is any statistical duality with both spaces not 
vector lattices. 

3. T H E  STATE-INJECTION APPROACH 

Wigner was the first to construct a linear embedding of the convex set 
of states of the standard quantum mechanics into M ( ~ )  for some phase 
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space ~.  His mapping was not positive. For several decades this defect was 
considered to be inevitable on the grounds of  a belief in the impossibility 
of  representing linearly quantal states by probability measures. This belief 
was not impaired even by early successful realizations of such a representa- 
tion. Now it is clear that a classical representation of states can be construc- 
ted for a wide class ofquantal  statistical dualities. The first such construction 
was done by Ali and Prugove~ki (1977) for the states of the standard 
quantum mechanics. 

Let ( V, V*) be a quantal statistical duality (to avoid unessential compli- 
cations we assume W =  V*). An affine injection L: Sv~M(Y~)~( for an 
appropriate measurable space f~ will be called (provided it does exist) a 
phase-space representat ion of Sv. As Sv g, enerates V, L admits (if it exists) 
a unique linear extension L: V ~  M ( ~ ) .  L is positive and of norm 1, hence 
is norm-continuous and its dual L*: M(Y~)*~ V* is positive and w*- 
continuous. 

It is easy to realize, owing to the adopted "bird's-eye view," that L 
(under the permanent assumption of  existence) defines a particular observ- 
able P: B(I~)~ V* over the Boolean ~r-algebra of  Baire subsets of fL Namely 
(a, P(X)):= (Lol, Xx) = Sa Xx d(La),  where X c B(I~), c~ ~ Sv, and Xx 
F(I) )  is the characteristic function of X. It is evident that P is obtained 
simply by restricting/~,* to the characteristic functions of the Baire sets. 

The observable P shows a peculiar property: as any element of M( f l )  
is nothing but a (signed) measure on its value space f~, the observable P 
has to distinguish all of  them. Hence P is able to distinguish all elements 
of L(Sv), i.e., all quantal states: if the measure 

P a 

~ o P :  a ( n )  , [o, e ] v , ~  [0,1] 

(the real unit interval) with e ~ Sv, is equal to another measure, say fl o P, 
for f l~Sv ,  then a=f l .  Because of this P is called an informationally 
complete (i.c.) observable. The first such observable was constructed by 
Prugove6ki (1977), who also realized its close connection with the phase- 
space representation. 

Indeed, an i.c. observable does not merely accompany a phase-space 
representation: given such an observable P: B(f~)~ [o, ely* we can build 
up the related phase-space representation simply by defining L(a) := a o P 
for any a c Sv. Any separable statistical duality (V, V*) admits an i.c. 
observable, hence admits a phase-space representation [a result of Singer 
and Stulpe (1991)]. 

The brightness of the mathematical form of  the state-injection approach 
should not hide its defects2 It has to be stressed that the phase-space 
representation as defined above does not provide a classical representation 
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of the quantal statistical duality. Because of its linearity s preserves the 
compatibility (coexistence) of effects; thus s consists of 
mutually compatible elements. This implies that s elf(m) is always a 
proper subset of [o, ely*, hence (assuming that L* is bijective, which 
generally does not hold true) s attaches classical effects only to a narrow 
set of mutually compatible quantal effects; the rest are mapped outside 
[o, e]vm~ and even outside the positive cone of F(f~). A clear demonstration 
of this phenomenon in the special case of finite-dimensional Hilbert-space 
quantum theory can be found in the paper of Busch et al. (1991). 

It is impossible to remove the above defect staying inside the state- 
injection approach, as the unfortunate property of L* comes directly from 
the definition of the phase-space representation. So let us try to relax the 
assumed properties of L: we define a quasi-phase-space representation A 
of Sv (provided it does exist) as an affine injection of Sv into the hyperplane 
determined in M(f~) by M(f~)[. If A(Sv) is a subset of M([I)[ we get the 
proper phase-space representation. If, conversely, A(Sv) contains M(f t )[ ,  
then A*([o, e]r(m) contains [o, ely,.  Measures representing quantum states 
are then not positive in general; however, all quantal effects get their classical 
counterparts from [o, ely(re. We see here in its generality the effect of 
"shifting the burden," observed by Sudarshan (1983) in the special case of 
Kano distributions. 

The Wigner map Aw lies between the two extremes: Aw(Sv) is placed 
in such a manner that the image of any quantal pure state falls outside 
M(fl)~- [proved by Wigner; see Hillery et al. (1984)]; nevertheless all 
extreme elements of M(f t ) [  lie outside Aw(Sv). This immediately implies 
that the Wigner map suffers two defects at the same time: quantal states 
are represented by not necessarily nonnegative measures and quantal effects 
possess not necessarily positive classical counterparts. 

Two Obvious remarks close this section. The intermediate case A(Sv) = 
M(~I)~- is evidently impossible because the set of quantal states must have 
essentially different affine structure than the set of all probability measures-- 
the latter is a simplex, whereas the former cannot be a simplex on the 
strength of the definition. An interesting illustration of this fact is provided 
in Busch et al. (1991). The second remark is that it is evident that any 
quasi-phase-space representation (except the case when it is a proper 
phase-space representation), including the Wigner one, cannot possess the 
associated i.c. observable. 

4. T H E  D E L I N E A R I Z A T I O N  A P P R O A C H  

One could risk the claim that the philosophical attitude toward the 
peculiarities of quantum mechanics in this approach is to some extent 
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opposite to that of the state-injection approach. The representation of 
quantal pure states by essentially diffuse probability distributions over a 
phase space suggests that quantal probabilities would be caused by the 
imprecise preparation of states, as in the case of classical statistical theories. 
Behind the delinearization approach one can find a rather opposite idea: 
quantum pure states would be really pure, but taking too narrow a set of 
observables into account causes all the "genuine quantal" features of the 
theory. 

The set of quantal pure states is then the starting place of the approach; 
hence we should describe a quantal system by means of a statistical duality 
( W*, W) rather than ( V, V*) in order to have a sufficiently rich set Ex Sw,. 
Then we define the statistical duality (M(O), F(Y~)) based on f~ = Ex Sw. 
(the bar denotes the w*-closure). The linear injection D: [o, e]w ~, [o, elF(a) 
defined by the evaluation (a, D(a)):=(a, a) for any ae[o, e]w and a e  
Ex Sw* will be called the delinearization of the original statistical duality. 
D admits a unique linear extension /5: W~F(Y~), b is the smallest 
separating functional representation of W (Alfsen, 1971), and thus it is 
injective and order-preserving (hence isometric). Observe that the 
delinearization always exists for a given duality (W*, W) and is unique. 

The m a p / 9  allows us to identify W with a uniformly closed subspace 
of F(12). The adjoint map D* can be seen now as attaching to any linear 
functional a ~ M(f~) its restriction to W. It is essential tha t / )*  always maps 
M(O)~ onto Sw* and that (except for the extreme points of Sw.) it attaches 
to a given quantal state a large collection of probability measures on f~ 
(Alfsen, 1971; Asimov and Ellis, 1980; Schaefer, 1986). 

The delinearization approach avoids some disadvantages of the 
foregoing. It transforms any quantal observable A: B ~ [o, e] w into a well- 
defined and unique classical observable simply by composing it with the 
delinearization, 

A 
b o A :  B ,>[o,e]w , [o ,e ] r (n)  

Evidently all quantal probability distributions 

A c~ 

o~oA: B ,[o,e]w >[0,1] 

with a c Sw* are preserved under delinearization: a o A =/3 o/~ o A for any 
quantal observable A, any a e Sw*, and any /3 e / 9 "  ~(a). Nevertheless 
quantal observables, so carefully transported to the classical theory, become 
classical observables, hence all their quantal mutual relations (incompatibil- 
ity, complementarity, commutation relations, etc.) disappear. Observe also 
that all quantal effects are mapped by D onto fuzzy classical effects (with 
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obvious exceptions), so all original quantal observables become unsharp 
after delinearization. 

The many-to-one property of the restriction map /~*: M(f~) [~  Sw., 
although it can be inconvenient for concrete computations, should satisfy 
many theoreticians. Indeed, some efforts to introduce the quantal phase 
space f~ = Ex Sw* (Misra, 1974; Ghirardi et al., 1976) were motivated by 
the idea of extending von Neumann's density matrix description (our Sw.) 
into the broad set of statistical mixtures of pure states [our M(~) [ ] .  

The delinearization approach provides a new and perhaps more satis- 
factory phase-space framework for any quantal theory. However, it cannot 
be seen as a way to achieve a classical representation for quantum 
mechanics, because any quantal theory after delinearization becomes 
classical. 

5. QUANTIZATION 

Some of the mappings appearing in our discussion of the two 
approaches point from the classical toward the quantal. This suggests that 
these approaches could also provide methods of quantization. Indeed, the 
"prime quantization" of Ali and Doebner (1986) fits well the scheme of the 
state-injection approach: their prime quantization map (their formulas 3.10 
and 3.11) appears like, save for unessential details, our map/~*. 

The quantization problem consists in discovering somehow a natural 
and convincing way to ascribe the Hilbertian quantum model to a classical 
theoretical model of a physical system. It is not merely a question of 
language, so we cannot be satisfied only by expressing a classical theoretical 
model in terms of operators on a Hilbert space. What is essential for the 
quantization is to obtain the genuine quantal relations between operators 
chosen to represent classical observables. Thus, if the map L* is used to 
define a quantization procedure, it should be complemented by a precise 
prescription for how to pass from the i.e. observable and its functions to 
the sharp observables of standard quantum mechanics satisfying the known 
commutation relations. 

On the other hand, the delinearization approach, once numerous con- 
crete problems have been solved, could also provide a new method of 
quantization. Having a classical model of a physical system subjected to 
quantization, we pick up some physically basic sharp observables. Then we 
attach to them unsharp observables with the same expectations in all states 
[such constructions can be found in the literature (Davies, 1976; Busch, 
1985, 1986; Ali and Prugove~ki, 1977)]. The closed linear subspace of F(~)  
spanned by all effects of such chosen unsharp observables would correspond 
to D(W) of the delinearization approach. The restrictions of all classical 
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states to this subspace will define the set of  states of  the "quantal"  model 
we are constructing. Here the story must be in terrupted-- i t  is not known 
yet how to obtain a Hilbert-space representation of  a statistical duality. 
Several other hard problems must be solved before the above scheme can 
become a working procedure. We can, however, illustrate the sketched 
quantization procedure by a simple example adopted from a paper  of  
Neumann  (1985). 

Let Y, denote the unit sphere in R 3 with the topology induced by the 
natural topology of  ~3. We construct the classical statistical duality, taking 

as the phase space 1~. The duality (M(Z) ,  F (~ ) )  will be considered as 
the classical model to be quantized. Let us now take the subspace G of 
F(~:) spanned by all functions f ( x ) = f 0 + f "  x with (f0, f )~  R 4, x ~ : .  Here 
G is a four-dimensional order-unit normed subspace of F(Z) .  As any 
element of  G can be extended to an affine function on the convex set 
B := {xlx c R 3, Ilxll -< 1}, i.e., on the unit ball of  R 3, G can be identified with 
A ( B ) - - t h e  order unit Banach space of affine functions on B. Thus (Alfsen, 
1971; Asimov and Ellis, 1980; Schaefer, 1986) the ball B is the base of  the 
dual G*, and ~: = Ex B is the set of  pure states of  the obtained quantal 
statistical duality (G*, G). The injection/~: G ~ F(E)  defines the dual map 
/~* which to any point of  B attaches a collection of  probability measures 
on ~. It is rather evident now that B, considered as the set of  states of  
(G*,  G),  is to be identified with the Poincar6 ball (e.g., Busch and Schroeck, 
1989), so we get the two-dimensional Hilbert-space representation of  the 
obtained quantal statistical duality. Thus our quantization procedure results 
in the standard description of the spin properties of  a spin-half system. 
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